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IMPORTANCE Electroencephalograms (EEGs) are a fundamental evaluation in neurology but
require special expertise unavailable in many regions of the world. Artificial intelligence (AI)
has a potential for addressing these unmet needs. Previous AI models address only limited
aspects of EEG interpretation such as distinguishing abnormal from normal or identifying
epileptiform activity. A comprehensive, fully automated interpretation of routine EEG based
on AI suitable for clinical practice is needed.

OBJECTIVE To develop and validate an AI model (Standardized Computer-based Organized
Reporting of EEG–Artificial Intelligence [SCORE-AI]) with the ability to distinguish abnormal
from normal EEG recordings and to classify abnormal EEG recordings into categories relevant
for clinical decision-making: epileptiform-focal, epileptiform-generalized, nonepileptiform-
focal, and nonepileptiform-diffuse.

DESIGN, SETTING, AND PARTICIPANTS In this multicenter diagnostic accuracy study,
a convolutional neural network model, SCORE-AI, was developed and validated using
EEGs recorded between 2014 and 2020. Data were analyzed from January 17, 2022, until
November 14, 2022. A total of 30 493 recordings of patients referred for EEG were included
into the development data set annotated by 17 experts. Patients aged more than 3 months
and not critically ill were eligible. The SCORE-AI was validated using 3 independent test
data sets: a multicenter data set of 100 representative EEGs evaluated by 11 experts,
a single-center data set of 9785 EEGs evaluated by 14 experts, and for benchmarking with
previously published AI models, a data set of 60 EEGs with external reference standard.
No patients who met eligibility criteria were excluded.

MAIN OUTCOMES AND MEASURES Diagnostic accuracy, sensitivity, and specificity compared
with the experts and the external reference standard of patients’ habitual clinical episodes
obtained during video-EEG recording.

RESULTS The characteristics of the EEG data sets include development data set (N = 30 493;
14 980 men; median age, 25.3 years [95% CI, 1.3-76.2 years]), multicenter test data set
(N = 100; 61 men, median age, 25.8 years [95% CI, 4.1-85.5 years]), single-center test data
set (N = 9785; 5168 men; median age, 35.4 years [95% CI, 0.6-87.4 years]), and test data
set with external reference standard (N = 60; 27 men; median age, 36 years [95% CI, 3-75
years]). The SCORE-AI achieved high accuracy, with an area under the receiver operating
characteristic curve between 0.89 and 0.96 for the different categories of EEG abnormalities,
and performance similar to human experts. Benchmarking against 3 previously published
AI models was limited to comparing detection of epileptiform abnormalities. The accuracy
of SCORE-AI (88.3%; 95% CI, 79.2%-94.9%) was significantly higher than the 3 previously
published models (P < .001) and similar to human experts.

CONCLUSIONS AND RELEVANCE In this study, SCORE-AI achieved human expert level
performance in fully automated interpretation of routine EEGs. Application of SCORE-AI
may improve diagnosis and patient care in underserved areas and improve efficiency and
consistency in specialized epilepsy centers.
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E lectroencephalography (EEG) is the tool most often used
in the diagnostic workup of patients with suspected
epilepsy.1 In skilled hands, EEG provides essential in-

formation to aid diagnosis and classification of epilepsy, im-
portant for therapeutic decision-making.1-3 EEG helps differ-
entiate epilepsy from other paroxysmal neurological events and
nonepileptic causes of impaired consciousness.1-3 Although
epilepsy is one of the most common serious neurological con-
ditions, with a prevalence of 7.60 per 1000 persons and more
than 70 million people affected worldwide,4,5 expertise in read-
ing clinical EEGs is not widely available.6 Even in countries with
advanced health care systems, most EEGs are read by physi-
cians without fellowship training in EEG interpretation.7

Misinterpretation of EEG is the most common cause of epi-
lepsy misdiagnosis.8-10 Due to the steadily increasing num-
ber of EEG referrals, the workload is challenging even in spe-
cialized centers.11,12

Artificial intelligence (AI) has the potential for improving
the management of epilepsy by addressing unmet clinical
needs, providing diagnostic interpretation of EEGs where ex-
pertise is scarce, and decreasing excessive workloads placed
on human experts interpreting EEGs in specialized centers.13-15

To date, AI approaches in clinical EEG have addressed only lim-
ited aspects in isolation, such as distinguishing normal from
abnormal recordings,16 detecting seizures,17-19 or detecting in-
terictal epileptiform discharges.20 Other publications have also
claimed that AI achieved human expert performance for spike
detectors21-24 but not for the comprehensive assessment of rou-
tine clinical EEGs, equivalent to human expert assessment,
which has not yet been reported. Most previously published
approaches bear important limitations that are often encoun-
tered in AI studies.13 A recently published head-to-head vali-
dation study25 of AI models for detection of interictal epilep-
tiform discharges reported that fully automated detection using
currently available models had a low specificity precluding their
clinical implementation.

Our goal was to develop and validate an AI model for the
comprehensive assessment of routine clinical EEGs. Beyond dis-
tinguishing abnormal from normal EEG recordings, our aim was
to classify abnormal recordings into the major categories that
are most relevant for decisions involving patients. These were
epileptiform-focal, epileptiform-generalized, nonepileptiform-
focal, and nonepileptiform-diffuse abnormalities.1,26,27 We
trained a deep learning model on a large data set of highly an-
notated EEGs, using the Standardized Computer-based Orga-
nized Reporting of EEG (SCORE EEG) system.26,27 SCORE
EEG is a standardized software tool for annotating EEGs using
common data elements. It is endorsed by the International
Federation of Clinical Neurophysiology and the International
League Against Epilepsy.26,27 Using the SCORE EEG software,
human experts label the observed clinically relevant EEG fea-
tures using standardized data elements. This process gener-
ates a clinical report, and at the same time feeds these features
into a centralized database. The highly annotated large SCORE
EEG database provides a rich source of data for training an
AI model.

We conducted a clinical validation study using indepen-
dent anonymized test data sets consisting of EEGs not used

for developing the AI model. We named the AI model Stan-
dardized Computer-based Organized Reporting of EEG–
Artificial Intelligence (SCORE-AI). eFigure 1 in Supplement 1
summarizes the model’s development and clinical validation
algorithm. In this diagnostic accuracy study, the index test was
the output of SCORE-AI, using the model and thresholds pre-
determined in the development phase, with no iterations or
adjustments made in the clinical validation phase. All EEGs in
the multicenter test data set were independently evaluated by
11 human experts. The majority consensus of the experts was
considered the reference standard. The second test data set was
a large single-center SCORE EEG data set from a center that did
not participate in the development of SCORE-AI. In this data
set the reference standard was the clinical evaluation of the
human experts from that center (1 physician per recording, in
total 14 physicians scoring the EEGs in this data set). In addi-
tion, we conducted a benchmarking comparison with 3 pre-
viously published AI models using a previously published data
set.25 The study was registered (ID ISRCTN14307038). The
study protocol is included in eAppendix 2 in Supplement 1.

Methods
We report the study using the Standards for Reporting of
Diagnostic Accuracy (STARD) reporting guideline. As the
reporting guideline for AI-Centered Diagnostic Accuracy
Studies (STARD-AI) is still under development, we included the
AI-specific aspects according to the Standard Protocol Items:
Recommendations for Interventional Trials-Artificial
Intelligence (SPIRIT-AI) extension.

Development of the AI Model
The data set used for development consisted of 30 493 ano-
nymized EEG recordings collected from Haukeland Univer-
sity Hospital, Bergen, Norway, and the Danish Epilepsy Cen-
ter, Dianalund, Denmark, using NicoletOne equipment (Natus
Neuro). A holdout test data set consisting of 2549 EEGs was
set aside and not used for development (eFigure 1 and eTable 1
in Supplement 1).

Key Points
Question Can an artificial intelligence (AI) model be trained
to interpret routine clinical electroencephalograms (EEGs) with
accuracy equivalent to that of human experts?

Findings In this diagnostic study, an AI model (SCORE-AI) was
trained on 30 493 EEGs to separate normal from abnormal
recordings then classify abnormal recordings as epileptiform-focal,
epileptiform-generalized, nonepileptiform-focal, or
nonepileptiform-diffuse. The SCORE-AI was validated using
3 independent test data sets consisting of 9945 EEGs not used
for training; SCORE-AI achieved diagnostic accuracy similar to
human experts.

Meaning Results of this study suggest that application of
SCORE-AI may have utility in improving patient care in
underserved areas and efficiency and consistency in specialized
centers.
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The mean EEG duration was 33 minutes (95% CI, 20-77
minutes). All EEGs had human expert assessments (a total of
17 physicians), using SCORE terminology26,27 implemented in
the SCORE EEG Premium software (Holberg EEG). EEG sig-
nals from the 19 sensors (10-20 system) and ECG were ex-
tracted. The study was approved by the institutional review
board and data safety officer at the Danish Epilepsy Centre. As
the study used anonymized data sets of previously recorded
EEGs, patient consent was not needed.

The SCORE-AI was developed in Python using Tensor-
Flow (eAppendix 1 in Supplement 1) using EEGs recorded be-
tween 2014 and 2020. Data were analyzed from January 17,
2022, until November 14, 2022. All the input EEGs and ECG
signals were converted into NumPy arrays. The model was con-
figured to access 19 channels of EEG signals, 1 channel of ECG
signal as well as the patient age and sex as input. A fixed Fou-
rier resampling was applied to the input data. The final AI
model (SCORE-AI) used input frequencies between 0.5 and
128 Hz with a sampling rate of 256 Hz.

The SCORE-AI model was configured to give 5 output sca-
lars, 0<xi<1, where x0 is the normality predictor and x1-4 pre-
dicts one of the abnormal categories: epileptiform-focal (x1),
epileptiform-generalized (x2), nonepileptiform-diffuse (x3) and
nonepileptiform-focal (x4). The values x1 to x4 were mutually
independent, but a constraint was placed such that 1 – x0 > max
(x1, x2, x3, x4).

The model architecture was determined in the main de-
velopment phase (eFigure 1 in Supplement 1). No automatic
optimization of hyperparameters was performed. The results
on the cross-validation data sets are shown in eFigure 2 in
Supplement 1. The resulting neural networks are shown in eFig-
ure 7 in Supplement 1.

Once the final model architecture was chosen, the model
was retrained on the entire development data set (eFigure 3
in Supplement 1). The development data set was then used to
determine the model output threshold (eTable 2 in Supple-
ment 1) yielding the best accuracy estimate and to produce cali-
bration curves (eFigure 4 in Supplement 1), enabling probabi-
listic interpretation of the model output.

The model was converted into a C++ plugin (dll interface)
for the Windows platform. Similar interfaces can be set up for
Linux or Mac computers. The output of the model is the as-
sessment of the EEG recording as normal, one of the abnor-
mal categories or a combination of the abnormal categories.
The integration of SCORE-AI with the NeuroWorks EEG reader
(Natus Neuro), autoSCORE, makes it possible to highlight the
abnormal epochs within the EEG recording (eFigure 5 in
Supplement 1) so that the expert can adjust the automated as-
sessment, if needed. The SCORE-AI performs a fully auto-
mated analysis (ie, no human interaction is needed to obtain
the output of the model).

Clinical Validation of the AI Model
The Test Data Sets
For clinical validation, we used independent test data sets con-
sisting of EEGs recorded from patients who were not in-
cluded in the development phase. We used a fixed and frozen
model and threshold values. The index test was the model out-

put. For an expected sensitivity of 75% and specificity of 90%,
with a 10% error (±5%) when calculating sample size, we
needed at least 85 EEGs.28

Multicenter Test Data Set | To account for the variability in hu-
man expert assessment, 11 experts (raters) from 11 different
centers, who trained in different institutions (eTable 5 in
Supplement 1), independently evaluated a data set of 100 rep-
resentative routine EEGs, recorded in different centers with
different EEG equipment. The raters did not participate in as-
sessing the EEGs in the development data set. The raters in-
dependently labeled each EEG using the same categories of EEG
abnormalities as described above. The reference standard was
majority consensus scoring of the raters.

Inclusion criteria included a targeted distribution of 60 nor-
mal recordings vs 40 abnormal recordings. From the holdout
data set (eTable 1 in Supplement 1), 75 EEGs (48 adult and 27
pediatric) were randomly selected. The remaining 25 EEGs
(17 adult, 8 pediatric) were selected from a data set of 150 ano-
nymized EEGs from the Mayo Clinic. Exclusion criteria in-
cluded patients aged 3 months or younger (neonatal EEGs) and
recordings from intensive care units (ICUs) (EEGs with rhyth-
mic and periodic patterns in critically ill patients were ex-
cluded). eTable 6 in Supplement 1 shows the distribution of
the 100 patients in the multicenter test data set.

The raters independently evaluated the EEGs. The age and
sex of the patient were disclosed for each EEG. The raters were
blinded to all other data and to the output of the algorithm.
The raters were free to change montages, filters, gain, and time
resolution while reviewing EEGs.

Large Single-Center Test Data Set | We compared the output of
SCORE-AI with the clinical assessments in a large SCORE EEG
data set from Oslo University Hospital (Norway) consisting of
9785 EEGs (5168 male; median age: 38.9 years; 95% CI, 0.6-
87.4 years). This center did not participate in the develop-
ment of the model. Fourteen different physicians assessed the
EEGs in this data set, but each EEG was assessed by a single
physician in clinical practice. Neonatal and ICU recordings were
also excluded from this data set. Mean duration of the record-
ings was 31 minutes (95% CI, 15-54 minutes). EEGs were re-
corded with NicoletOne equipment and described using the
SCORE EEG Premium software. In this data set 4681 EEG re-
sults (47.83%) were abnormal.

Outcome Measures
In the multicenter multirater test data set, we determined the in-
terrater agreement among the 11 human experts, and between
SCORE-AI and the human experts (eFigure 6 in Supplement 1).
Usingmajorityconsensusasreferencestandardinthemulticenter
test data set, we determined the diagnostic accuracy measures
of SCORE-AI (sensitivity, specificity, accuracy, positive and nega-
tive predictive values) using the conventional formulas.

In the large single-center test data set, we calculated the
intertest agreement between SCORE-AI and the clinical as-
sessment by the human experts. We hypothesized that the
agreement would be within range of the agreement between
human experts.
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Comparison With Other Approaches
Multicenter Test Data Set
To our knowledge, there are no other commercially available
or open-source AI models for comprehensive, fully auto-
mated assessment of routine clinical EEGs. We used the
spike-detector approach of encevis (Austrian Institute of Tech-
nology), software approved by the US Food and Drug Admin-
istration and certified in the European Union by Conformité
Européen, to compare this specific aspect with the perfor-
mance of SCORE-AI in the multicenter test data set. For this
purpose, the categories epileptiform-focal and epileptiform-
generalized were combined, and we compared the accuracy
of the 2 approaches for identifying recordings containing
epileptiform abnormalities in the multicenter test data set.

Benchmarking With Previously Published AI Models
To compare the performance of SCORE-AI with 3 previously
published models (encevis, SpikeNet, Persyst), we used the EEG
data set from a previous study.25 The median age in this data
set was 36 years (95%CI, 3-77 years). This data set consisted
of 20-minute routine clinical EEGs containing sharp tran-
sients (epileptiform or not) from 60 patients: 30 with epi-
lepsy (with 340 interictal epileptiform discharges in total) and
30 with nonepileptic paroxysmal events. This data set had an
external independent reference standard at the recording level
(ie, epilepsy vs no epilepsy), derived from video-EEG record-
ings of patients obtained during their habitual clinical epi-
sodes. As the previously published models were spike detec-
tors, we had to limit the evaluation to the accuracy of detecting
epileptiform discharges. We then compared sensitivity, speci-
ficity, and overall accuracy.

Statistical Analysis
Gwet AC1 agreement coefficients29,30 were used for measuring
interrater agreement, and the strength of agreement beyond
chance was interpreted according to Landis and Koch criteria.31

For computation of the 95% CIs, bootstrap resampling
(n = 10 000 to 100 000) was used for all metrics except the Gwet
AC1 statistic. Bayesian bootstrap resampling with smoothing was
used on the multirater multicenter data set of 100 EEGs as well
as for the 60 EEGs with external reference standard (raw fig-
ures available in eTable 4 of Supplement 1). Otherwise, for the
holdout test data set and the encevis comparison, plain boot-
strap resampling was used. The smoothing was achieved by sto-
chastically perturbing the confusion matrix by adding random
noise from a uniform Dirichlet distribution in each bootstrap
sample. For the AC1 statistic we constructed the 95% CIs from
the standard deviations as suggested in Gwet29 and Gwet.30 The
Python packages SciPy, NumPy, and Pandas were used to com-
pute the results. Inkscape and Pyplot were used to generate fig-
ures. Statistical significance was set at 2-sided P < .05. Intra-
rater agreement comparisons were based on 95% CIs and
considered statistically significant if there was no overlap.

Results
The characteristics of the EEG data sets include development
data set (N = 30 493; 14 980 men; median age, 25.3 years [95%
CI, 1.3-76.2 years]), multicenter test data set (N = 100; 61 men,
median age, 25.8 years [95% CI, 4.1-85.5 years]), single-
center test data set (N = 9785; 5168 men; median age, 35.4 years
[95% CI, 0.6-87.4 years]), and test data set with external ref-
erence standard (N = 60; 27 men; median age, 36 years [95%
CI, 3-75 years]). The performance in the holdout EEG data set
(n = 2549) is shown in the Figure. The SCORE-AI achieved high
accuracy, with an area under the receiver operating charac-
teristic curve between 0.89 and 0.96 for the different catego-
ries of EEG abnormalities. For the thresholds predefined in the
development data set (eTable 2 in Supplement 1), the accu-
racy measures in the holdout EEG data set are between 85.4%
and 92.3% (eTable 3 in Supplement 1). Recordings shorter than
20 minutes had lower area under the curve; for recordings lon-
ger than 20 minutes the area under the curve showed only
small relative variations related to the duration of the record-
ing. For duration 0 to less than 20 minutes, the mean area un-
der the curve (AUC) was 0.887. For duration 20 minutes or lon-
ger, the mean AUC was 0.903 calculated across all subcategories
using both the holdout test set (n = 2549) and the large clini-
cal data set (n = 9785) (eFigure 8 in Supplement 1).

Table 1 shows the interrater agreement (measured as Gwet
agreement coefficient [AC1]) among the 11 human experts and
between SCORE-AI and the majority consensus in the multi-
center data set (n = 100). There was almost perfect agree-
ment (Gwet AC1 = 0.9) among experts concerning the pres-
ence of generalized epileptiform discharges, and substantial
agreement (Gwet AC1 of 0.63-0.72) on focal epileptiform dis-
charges, diffuse nonepileptiform abnormalities, and on re-
cordings considered to be normal. The interrater agreement
was moderate (Gwet AC1 of 0.50-0.59) for the presence of fo-
cal nonepileptiform abnormalities, and for the exact match
when several abnormalities were present in the same record-
ing. Beyond-chance agreement between SCORE-AI and the ma-
jority consensus of human experts was similar to the agree-

Figure. Receiver Operating Characteristics Curves
on the Holdout Test EEG Data Set (n = 2549)
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ment among human experts for all aspects except for
identifying normal EEG recordings (Gwet AC1 = 0.9) and mul-
tiple abnormalities (Gwet AC1 = 0.69) (Table 1), for which
SCORE-AI had a significantly higher agreement with the ma-
jority consensus compared with the agreement among hu-
man experts (almost perfect vs substantial agreement). There
was no significant difference in the overall diagnostic accu-
racy between experts and SCORE-AI in the multicenter data
set (Table 2).

In the large external single-center test data set (n = 9785),
agreement between SCORE-AI and clinical evaluation of the
recordings was within the range of the human expert inter-
rater variability for identifying normal recordings (0.74) and
recordings with generalized epileptiform abnormalities (0.95),
and significantly higher for the remaining categories (0.64-
0.87) (Table 3).

Since none of the currently available AI models provides
a comprehensive fully automated assessment of routine clini-
cal EEGs, we limited the benchmarking to the comparison of

the ability to identify epileptiform discharges by combining
focal and generalized categories (Table 4). In the multicenter
test data set compared with encevis software,32 SCORE-AI had
significantly higher specificity, positive predictive value, and
accuracy, but lower sensitivity.

In the previously published data sets25 with external ref-
erence standard based on information obtained from epi-
lepsy monitoring units, fully automated detection of epilep-
tiform discharges using the 3 previously published AI models
(encevis, SpikeNet, and Persyst) had specificity (3%-63%) too
low for clinical implementation (eTable 7 in Supplement 1).25

SCORE-AI demonstrated substantially greater specificity com-
pared with the previously published models (90% vs 3%-
63%) and was more specific than the majority consensus of
the 3 human experts (73.3%) (eTable 7 in Supplement 1). The
sensitivity of SCORE-AI (86.7%) was similar to the sensitivity
of the human experts (93.3%), higher than the sensitivity of
SpikeNet (66.7%), and lower than encevis (96.7%) and Per-
syst (100%) (eTable 7 in Supplement 1). The overall accuracy

Table 1. Gwet AC1 Agreement Coefficients for the 11 Human Experts, SCORE-AI,
and the Human Expert Majority Consensus

EEG recording category

Agreement coefficient (95% CI)

Agreement among
the human experts

Agreement between SCORE-AI
and majority consensus
of human experts

Normal 0.723 (0.649-0.796)a 0.903 (0.820-0.987)a

Epileptiform-focal 0.723 (0.643-0.803) 0.757 (0.634-0.880)

Epileptiform-generalized 0.901 (0.854-0.949) 0.928 (0.865-0.991)

Nonepileptiform-diffuse 0.630 (0.539-0.721) 0.738 (0.608-0.868)

Nonepileptiform-focal 0.587 (0.499-0.674) 0.775 (0.657-0.893)

Exact match/multiple abnormalities 0.497 (0.433-0.561)a 0.689 (0.611-0.766)a

Abbreviations: EEG,
electroencephalography;
SCORE-AI, Standardized
Computer-based Organized
Reporting of EEG–Artificial
Intelligence.
a Significant difference. Statistical

comparisons were based on the
95% CIs. Significance means there
was no overlap between the
95% CIs.

Table 2. Average Accuracy of SCORE-AI and of the Human Experts With Respect to the Human Expert
Majority Consensus on 100 EEGs From the Multicenter Test Data Set

EEG recording category

Average accuracy (95% CI)
Difference
(P value)SCORE-AI Human experts

Normal 95.00 (89.61-97.88) 91.36 (88.04-94.10) .09

Epileptiform-focal 84.69 (76.73-90.54) 88.4 (84.35-91.91) .12

Epileptiform-generalized 94.9 (89.41-97.83) 95.36 (92.51-97.48) .34

Nonepileptiform-diffuse 84.69 (76.63-90.83) 86.09 (81.99-89.66) .33

Nonepileptiform-focal 85.71 (77.86-91.41) 85.25 (81.04-88.78) .47

Exact match/multiple abnormalities 65.31 (54.93-73.60) 66.7 (60.56-72.41) .33

Abbreviations: EEG,
electroencephalography;
SCORE-AI, Standardized
Computer-based Organized
Reporting of EEG–Artificial
Intelligence.

Table 3. Gwet AC1 Agreement Coefficients Between SCORE-AI and Clinical Assessment

EEG recording category
Agreement between SCORE-AI
and the clinical assessment of the EEGs

Difference between SCORE-AI–HE agreement
and HE-HE agreementa

Normal 0.737 (0.723 to 0.750) 0.014 (−0.061 to 0.089)

Epileptiform-focal 0.871 (0.862 to 0.879)b 0.147 (0.067 to 0.228)b

Epileptiform-generalized 0.948 (0.943 to 0.953) 0.0471 (−0.001 to 0.095)

Nonepileptiform-diffuse 0.737 (0.723 to 0.750)b 0.106 (0.014 to 0.199)b

Nonepileptiform-focal 0.768 (0.756 to 0.780)b 0.181 (0.092 to 0.269)b

Exact match/multiple abnormalities 0.637 (0.627 to 0.647)b 0.140 (0.075 to 0.205)b

Abbreviations: EEG, electroencephalography; HE, human experts;
SCORE-AI, Standardized Computer-based Organized Reporting of EEG–Artificial
Intelligence.
a HE-HE agreement as detailed in Table 1.

b Significant difference. Statistical comparisons were based on the 95% CIs.
Significance means there was no overlap between the 95% CIs.
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of SCORE-AI (88.3%; 95% CI, 79.2%-94.9%) was similar to the
human experts (83.3%; 95% CI, 73%-91.4%) and more accu-
rate (P < .001) than the 3 previously published AI models
(eTable 7 in Supplement 1).

Discussion
In this diagnostic accuracy study, we developed and vali-
dated the first AI model (SCORE-AI) to date capable of fully au-
tomated and comprehensive assessment of routine clinical
EEGs. The SCORE-AI achieved human expert performance in
automated interpretation of routine clinical EEGs. These re-
sults warrant clinical implementation with a potential to im-
prove patient care in remote and underserved areas where EEG
expertise is scarce or unavailable. In addition, SCORE-AI may
help improve efficiency and reduce excessive workloads for
experts in tertiary care centers who regularly interpret high
volumes of EEG recordings.

We designed the development and validation of the model
with special care to avoid typical errors and sources of bias13

and tailored the process to address specific aspects pertinent
to interpretation of clinical EEGs. We used a large data set of
30 493 EEGs, from different centers, to train the AI model. The
EEGs were highly annotated by 17 human experts, using a stan-
dardized software tool (SCORE-EEG).26,27 For the clinical vali-
dation, we used a “fixed and frozen” model and thresholds.
To avoid overfitting, no iterations (ie, adjustments) of the AI
model were allowed in the clinical validation phase. The test
data set was independent from the development data set. To
ensure generalizability, we aimed for a test data set with a rep-
resentative distribution and a large consecutive test data set
of nearly 10 000 EEGs. The human experts providing the ref-
erence standard in the validation phase of the study were dif-
ferent from those who participated in the development por-
tion of the process. In the multicenter test data set, EEGs were
recorded with different EEG equipment. The analysis process
was fully automated and blinded to all other data.

The SCORE-AI is the first model to date capable of com-
pleting a fully automated and comprehensive clinically rel-
evant assessment of routine EEGs. The output of SCORE-AI pro-
vides a more complex classification of EEG abnormalities than
previously published AI models. Identifying the presence of
epileptiform activity in the EEGs helps in diagnosing epi-
lepsy. Distinguishing focal from generalized epileptiform dis-

charges additionally aids in choosing optimal antiseizure
medication.33,34 Distinguishing focal from diffuse nonepilep-
tiform EEG abnormalities directs further diagnostic steps, such
as neuroimaging for the former case and a search for system-
atic etiologies in the latter. Hence, the granularity of classify-
ing abnormal EEGs provides sufficient information for the re-
ferring physician to make clinical decisions.

Another remarkable finding in our study is the interrater
agreement among human experts. Previous studies found
only fair to moderate agreement in EEG reading.35,36 How-
ever, those studies assessed short segments of EEG with
selected abnormal patterns, and not a complete, continuous
recording, as is the case in the clinical setting. In this study,
we found better results with comprehensive expert assess-
ment of the entire routine EEG recording: almost perfect
agreement for generalized epileptiform abnormalities, sub-
stantial agreement for focal epileptiform discharges, diffuse
nonepileptiform abnormalities, and for normal EEG record-
ings, and moderate beyond-chance agreement for the pres-
ence of focal nonepileptiform abnormalities. The perfor-
mance of SCORE-AI was well within the variability present
among human experts.

There is no other open-source or commercially available
software package for comprehensive assessment of routine
clinical EEGs. Several AI-based models have been developed
for detection of epileptiform activity on EEG.20 However, this
aspect is only a fragment of the complete comprehensive EEG
assessment. The other major limitation of the previously pub-
lished models is the high number of false detections (0.73 per
minute) precluding their clinical implementation.37 A recent
study reported that the fully automated application of 3 pre-
viously published AI models had specificity (3%-63%) that is
too low for clinical application.25 Human expert interaction via
a semiautomated approach was needed to achieve clinical-
level performance when using the previously published AI
models.25 The benchmarking in our study confirms this, and
shows that as opposed to previously published spike detec-
tors, SCORE-AI reaches high specificity (90%) similar to hu-
man expert performance. In that data set, SCORE-AI had simi-
lar accuracy to the human raters, and significantly higher
accuracy than the 3 previously published AI models. The im-
portant improvement in SCORE-AI compared with previous AI
models is that our fully automated model achieves high speci-
ficity similar to human experts. We believe that the other AI
models would probably improve their performance if the cur-

Table 4. Comparison of Fully Automated Identification of Epileptiform Discharges Between SCORE-AI
and encevis on the Same 100 EEGs Used in the Multirater Test Set

Algorithm

Fully automated identification of EEG recordings with epileptiform abnormalities, % (95% CI)

Sensitivity Specificity
Negative
predictive value

Positive
predictive value Accuracy

encevisa 96.68 (88.89-100.00) 27.14 (17.19-37.88) 95.03 (83.33-100.00) 36.29 (25.93-46.99) 48.03 (38.00-58.00)

SCORE-AIb 89.94 (77.78-100.00) 87.13 (78.79-94.29) 95.28 (89.39-100.00) 74.98 (60.00-88.57) 87.97 (81.00-94.00)

Difference (P value) <.001 <.001 .49 <.001 <.001

Abbreviations: EEG, electroencephalography; SCORE-AI, Standardized
Computer-based Organized Reporting of EEG–Artificial Intelligence.
a For encevis, the detection of one or more spikes was considered as

epileptiform classification of the EEG.
b For SCORE-AI, either epileptiform-focal and/or epileptiform-generalized was

considered as an epileptiform classification of the EEG.
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rent epoch-level output of these algorithms was used to train
a recording-level assessment.

The expert-level performance of SCORE-AI warrants its
application in remote and underserved areas. Its use has the
potential to decrease EEG misinterpretation and circumvent
the problem of low interrater agreement in many places where
clinical EEG is read by physicians without fellowship train-
ing, without access to expert supervision, or with limited ex-
perience (often in the general neurology practice setting). Fur-
thermore, SCORE-AI may help reduce the workload in centers
where experts are available but overburdened by clinical work-
loads that include EEG interpretation. Since SCORE-AI ap-
pears to identify normal EEGs with nearly 100% precision, ex-
perts may decide to spend less time evaluating these recordings
and more time on some of the more difficult epilepsy moni-
toring unit or ICU recordings. The SCORE-AI is currently being
integrated with one of the most widely used clinical EEG equip-
ment systems (Natus Neuro). This will promote broad avail-
ability of the model in clinical practices because it does not re-
quire specialized hardware and it can also be converted into
other computer-based interfaces.

Limitations
A limitation of the current version of SCORE-AI is that it was
developed and validated on routine EEGs excluding neo-

nates and critically ill patients. Nevertheless, routine EEGs rep-
resent the largest volume of EEG recordings performed for clini-
cal purposes and is one of the most important missing clinical
tests in underserved areas.1 Another important limitation is that
the model was trained to find biomarkers visually identified
by human experts. Training the model to predict diagnosis or
therapeutic response can potentially circumvent this limita-
tion, and this will be addressed in future studies. Using inter-
pretable or explainable AI, the plan is to identify features used
by the model to make the process transparent.

Conclusions
In this diagnostic accuracy study, our convolutional neural net-
work model, SCORE-AI, achieved expert-level performance in
reading routine clinical EEGs. Its application may help to pro-
vide useful clinical information in remote and underserved
areas where expertise in EEG interpretation is minimal or un-
available. Importantly, it may also help reduce the potential
for EEG misinterpretation and subsequent mistreatment, im-
prove interrater agreement to optimize routine interpreta-
tion by neurologists, and increase efficiency by decompress-
ing excessive workloads for human experts interpreting high
volumes of EEGs.
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